Einstein warped product spaces on Lie groups

نویسندگان

چکیده

We consider a compact Lie group with bi-invariant metric, coming from the Killing form. In this paper, we study Einstein warped product space, $M = M_1 \times_{f_1} M_2$ for cases, $(i)$ $M_1$ is $(ii)$ $M_2$ and $(iii)$ both are groups. Moreover, obtain conditions an of groups to become simple manifold. Then, characterize warping function generalized Robertson-Walker spacetime, $(M I G_2, - dt^2 + f_1^2 g_2)$ whose fiber $G_2$, being semi-simple $\dim G_2>2$, having

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

Scale Spaces on Lie Groups

In the standard scale space approach one obtains a scale space representation u : R R → R of an image f ∈ L2(R) by means of an evolution equation on the additive group (R,+). However, it is common to apply a wavelet transform (constructed via a representation U of a Lie-group G and admissible wavelet ψ) to an image which provides a detailed overview of the group structure in an image. The resul...

متن کامل

Willmore-chen Tubes on Homogeneous Spaces in Warped Product Spaces

We present a new method to obtain Willmore-Chen submanifolds in spaces endowed with warped product metrics and fibers being a given homogeneous space. The main points are: First the invariance of the variational problem of WillmoreChen with respect to the conformal changes in the ambient space metric. Second, the principle of symmetric criticality which allows us to relate the problem with that...

متن کامل

Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups

A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition Ric(ρ) = c · ρ for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l), and on the symplecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cubo

سال: 2022

ISSN: ['0716-7776', '0719-0646']

DOI: https://doi.org/10.56754/0719-0646.2403.0485